Quiz 4

Chemical Engineering Thermodynamics
February 11, 2016

P4.2. Twenty molecules are contained in a piston + cylinder at low pressure. The piston moves such that the volume is expanded by a factor of 4 with no work produced of any kind. Compute $\Delta \mathrm{S} / \mathrm{k}$ in two ways, a) using four separated initial volumes and calculating the number of states in the initial and final conditions, and b) by considering the ratio of the initial and final volumes. Why do the two answers differ and why is one larger?
4.9. Airplanes are launched from aircraft carriers by means of a steam catapult. The catapult is a well-insulated cylinder that contains steam, and is fitted with a frictionless piston. The piston is connected to the airplane by a cable. As the steam expands, the movement of the piston causes movement of the plane. A catapult design calls for 270 kg of steam at 15 MPa and $450^{\circ} \mathrm{C}$ to be expanded to 0.4 MPa . How much work can this catapult generate during a single stroke? Compare this to the energy required to accelerate a 30,000 kg aircraft from rest to 350 km per hour.
$\mathrm{R}=8.314 \mathrm{~J} / \mathrm{mole}-\mathrm{K} ; \mathrm{N}_{\mathrm{A}}=6.022 \times 10^{23} ; \mathrm{N}_{\mathrm{A}} \mathrm{k}_{\mathrm{B}}=\mathrm{R}$;
1 Joule $=1 \mathrm{~N}-\mathrm{m}=1 \mathrm{MPa}-\mathrm{cm}^{3}=1 \mathrm{~kg} \mathrm{~m} / \mathrm{s}^{2}=0.23901 \mathrm{cal}$

E.9. Properties of Water ${ }^{1}$

I. Saturation Temperature

$\begin{gathered} T \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$	$\begin{gathered} P \\ \left(M P_{2}\right) \end{gathered}$	\% m^{\prime} / lg	$\begin{gathered} 1^{r} \\ m^{3} / \mathrm{kg} \end{gathered}$	4 Wkg	$\begin{aligned} & \Delta U^{\text {eq }} \\ & \mathrm{NHg} \end{aligned}$	V^{F} Wh	H Nk	$\begin{aligned} & \mathrm{N} /{ }^{-\mu} \\ & \mathrm{N} \mathrm{l}_{8} \end{aligned}$	$\\|^{\prime}$ NH_{g}	5 $\mathrm{Nl}_{4}-\mathrm{K}$	$\begin{gathered} \Delta 5^{\circ} \\ \text { Wlof } \end{gathered}$	5 $\mathrm{Nl}+-\mathrm{K}$
0.01	0.00612	0.001500	2169912	0.00	237492	237492	0.00	250092	250092	0.000	9.1565	91555
5	0.00873	0.061000	147.013	2100	236076	2381.78	21.0	249904	251006	0.005	8948	9×1045
to	(e901238	0.00600	N63032	4208	234663	23 er 65	420	247719	251921	0.1511	87457	85088
15	0.00176	0.001001	77875	628	233251	2395.8	6298	246535	2588.33	0225	8559	87803
20	000339	0.00100	57.1569	8391	231841	24023	8391	24955	23374	eves	83008	stete
25	0.003170	0.00103	433973	10483	230430	240913	10483	24168	254551	03672	8.1894	85566
30	0.00247	0001004	32878	126.73	229018	241591	12673	24098	255555	0.438	80152	81530
35	enebs\%	0961006	23063	14663	22\%04	20269	14663	24179	29645	OSMOI	18106	83517
45	0,00739	0.01008	195151	16753	228185	242939	16753	200598	257351	05724	76831	82555
45	0009595	0.001010	152521	188.43	224765	246608	188.4	23960	25824	063\%	75397	81613
5	0.012400	0.001012	12039	29033	233205	24273	20934	238198	2991.29	0.7038	13710	8074
55	0.015500	0001015	9.643	23024	221910	248934	20036	236083	250009	07680	12218	79508
60	601900	006tel	1667	251.16	220474	246590	2518	235765	NWE 83	${ }_{0} 8313$	1008	19031
65	encoom	0.001020	6.938	27209	219032	2662.41	27212	23638	261750	0s937	69399	789\%
70	0031200	000102	50395	29318	217583	2468 \%	20307	233303	26810	-0651	6709	7754
75	0.03860	0.001036	41299	31399	2161.25	247524	31463	233057	33460	1.0158	66654	185812
80	0.arty	acoles	3.025	34\%	214680	248158	33801	230501	20450	107\%	65345	76111
85	0.65790	0001032	2 E 58	35595	213186	245781	35601	220532	265139	1.145	64088	7544
90	0000200	0.00103s	23991	37697	211700	249397	37104	208. 49	20959	1.1589	6285	1.888
96	0atise	0.001045	1586	$3 \% 6$	210204	250004	39809	22mes	26761	1209	61647	7459
100	0.101400	0.001043	16718	419.0	2086\%	25060	41917	2256.59	267557	13072	60469	13541
106	0.12090	0.001047	1.4184	44015	2071.78	281190	40127	22012	2083.39	1363	59319	72882
110	0.14400	600106?	12093	45128	208641	281769	461.2	22064	269106	14188	58193	72398
115	0.169200	0.001656	10358	250.4]	209592	252333	48.59	221509	209558	1473	5.001	7188
120	0.19590	0001060	08912	20360	200526	22588	50381	22012	27059	15290	56012	7129
125	0232200	0001065	2700	52483	2009.4	25427	53507	218803	271310	15816	5.454	710770
130	0270300	0.001080	06059	54609	1993.4	283959	54638	2173.70	272008	16345	53918	71064
138	0313800	003075	0.817	S69,41	197724	25465	567.74	219913	278687	15572	5200	6977
(4)	0361500	0.001085	0.03s	58871	190085	25996	58916	214428	2733.4	1.7392	5.901	69293
145	0.41500	0.001038	2486	65019	194423	254.4	610.64	212916	273080	1.8007	50919	6 sk 3
150	0.47600	0.06109	0.398	63166	192739	295908	63218	21138	27459	1848	4985	68371
155	0.54500	0.0010\%	03458	65319	191032	26635	653.9	209808	275181	18 sed	4900	6.985
160	0.4880	206150	0.208	6749	150299	2567.78	6754	208197	29578	1908	45065	6749
165	0.7000	0.001108	02724	65\%	1575.99	257185	69734	246557	276281	1992	4714	6 Notb
170	0.02200	0.001114	02486	718.20	155759	2575.73	71908	208882	276790	20417	4623	66650
175	0.925600	0.001121	02166	74008	183937	25793	7410	203169	27727	2006	45335	66541
150	1.00500	0.001127	01938	76152	18091	28858	763.05	201416	27721	2132	44485	65440
188	1.12300	0.mil3	21739	7391	$15^{2} 13$	285804	78619	198\%2	2781.41	21875	43572	6547
190	123580	0.00114	01854	8060	178301	23sen	807.13	197785	278838	2238	4.2704	65059
198	130850	0.6815	01499	888.18	1763.56	2991.74	88979	159903	27858	2285	4188	6.5578
20	158490	60.6159	01272	850.47	17837	2994.30	88.27	193974	27201	23305	409%	6430
205	1.72430	0001164	0.1151	87287	172353	25\%40	8748	191955	27948	$23 m$	40153	363930
210	190770	0.001173	0.104	805.39	10092	25831	897.6	189064	290121	2405	39818	863363
215	21058	0 0.0115	00047	91804	165190	25974	92153	187879	27033	25712	3858	8 6320
220	231960	0001190	0.561	98182	1660.43	300125	98358	185137	28005	25177	3763	3 6280)
25	254970	0.001199	0.058	96.74	163850	$3 \mathrm{SLD24}$	9688	183535	20215	2.564	3684	3 62483
230	2×9710	0.01509	0.015	96681	161609	3 SL 90	980.19	1812.71	20129	26101	36027	7 62128
235	306250	0.001219	0665	1010.4	1998.16	3×13.20	101307	1789.40	2303.17	26561	35214	46.1775
240	33450	000129	00697	1033.4	158969	3081.13	103755	1765.41	2012\%	27030	34013	361423
245	365120	$00012 \pm)$	00647	1057.12	155565	26067	106155	174067	20022	27978	3354	4.1072
250	39760	000128	00801	1080.79	1521.00	$3 \mathrm{SOL.79}$	108577	1715.16	280093	2793	3278	6 60121
255	43290	0001264	0.469	1104.77	148572	2560.49	111023	1688	2790017	2898	31977	760369
260	468230	0.001276	0.422	112897	1499.75	$25 \% 77$	1134\%	1661.84	27\%60	2889	3.1167	760016
265	506330	0.001289	00387	1153.1]	14364	25\%45	1159.9	163353	2783.49	29307	3035	45961
270	550360	0.001303	00356	1178.10	141557	2993.67	118527	1604.42	278969	2976	2959	99934
275	594640	0001318	00388	120307	138926	250.33	121090	1574.27	2755.17	31024	28720	58944
200	6.41660	000133	00302	12883	1358 \%	2586.39	123688	1512.9	27758	30685	2784	158579
285	691470	000139	00.078	125392	13778	258181	12635	1510.48	2773.7	31147	2706	2 58009
29	7,4180	0001366	00056	127\% $\%$	$12 \% 67$	25765	129003	147669	276670	31612	2622	25.784
295	799910	000135	0.035	1366.19	12 So 30	2570.49	131721	141.43	275870	32050	25371	15.751
300	8.58790	0001404	0.017	1322.95	123067	26636	135501	148.63	274964	3255	24507	75.7099
305	921940	0.00143	00199	1360.18	119567	255588	13730	1366.13	2739.4	33088	2369	56657
310	986310	000145	00088	13793	1199.14	2547.017	14022	135.73	27219	33510	2274	4 5634
315	1055600	0001472	00169	141628	118089	2537.17	19188	128322	271516	313078	21818	855816
330	112430	000159	00155	145531	1000.70	258601	14622	123837	270.59	3.4.4	21078	85597
38	12.05100	000158	00112	1475.11	103830	213.41	138358	119081	28433	3500	1000	85.508
330	1285810	0001561	0.013	150585	9883	249.15	158387	115016	2 6 66 B	35618	1594	4 5402
335	13.01730	0001507	00118	1577\%	98545	245%	1559.45	10559	265535	36050	17856	6 53906
340	14.60070	0001688	0005	15706	8938	2454.4	159453	102732	2 S 159	36601	1.675	53336
35	155460	000168	00008	160530	877.09	24360	163148	96.12	29490	3.717	1556	6 52762
350	165990	0.00174	00088	169.13	71601	2418.14	167089	8275	26364	3774	1.488	652110
355	1757010	0.0158	0.0079	1681.5	766.4	238840	1713.72	81293	252665	3843	1.241	15130
360	1866600	0001505	0.009	17628	62550	2351.78	176166	71983	285189	39167	1.1399	50636
365	19.8210)	0002017	0.060	177.7%	52600	290379	1817.71	60518	20229	40014	09683	39497
370	21.04360	0002215	0.0050	184.07	$3{ }^{3} 619$	2230.26	159069	4883	23458	41112	0.690	48012
37195	2206000	0.003106	0.0631	2015.73	0.00	2015.73	258426	0.00	2515.25	4.4070	0.000	- 4.4070

IL. Saturation Pressure

$\begin{gathered} T \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$	$\begin{gathered} P \\ (\mathrm{MPa}) \end{gathered}$	f^{2} $\mathrm{~m}^{3} / \mathrm{kg}$	V^{V} $\mathrm{~m}^{3} / \mathrm{kg}$	U^{L} $\mathrm{~kJ} / \mathrm{kg}$	$\begin{aligned} & \Delta U^{* N p} \\ & \mathrm{k} / \mathrm{kg} \end{aligned}$	U^{V} $\mathrm{~kJ} / \mathrm{kg}$	H^{2} k / kg	$\Delta H^{P V}$ k / kg	$\begin{gathered} H^{\prime V} \\ \mathrm{~W} / \mathrm{kg} \end{gathered}$		$\begin{gathered} \Delta S^{* ण \varphi} \\ \mathrm{k} / \mathrm{kg} \cdot \mathrm{~K} \end{gathered}$	$\begin{gathered} S^{V} \\ \mathrm{~W} / \mathrm{kg} \cdot \mathrm{~K} \end{gathered}$
6.97	0.001	0.001000	129.1780	29.30	2355.19	2384.49	29.30	248437	2513.67	0.1059	88690	8.9749
17.50	0.002	0.001001	66.9869	73.43	2325.47	2398.90	73.43	2459.45	253288	0.2606	8.4620	8.7226
24.08	0.003	0.001003	45.6532	100.98	2306.90	2407.88	100.98	2443.86	2544.84	03543	8.2221	8.5764
28.96	0.004	0.001004	34.7911	121.38	2293.12	2414.50	121.39	2432.28	2553.67	0.4224	80510	8.4734
32.87	0.005	0.001005	28.1853	137.74	2282.06	2419.80	137.75	2422.98	2560.73	0.4762	79176	83938
36.16	0.006	0.001006	23.7334	151.47	2272.76	2424.23	151.48	2415.15	2566.63	0.5208	78082	83290
39.00	0.007	0.001008	20.5245	163.34	2264.71	2428.05	163.35	2408.37	2571.72	0.5590	7.7155	8.2745
41.51	0.008	0.001008	18.0989	173.83	2257.58	2431.41	173.84	240237	2576.21	0.5925	7.6348	8.2273
43.76	0.009	0.001009	16.1992	183.24	2251.19	2434.43	183.25	239697	2580.22	0.6223	7.5635	8.1858
45.81	0.01	0.001010	14.6701	191.80	2245.36	2437.16	191.81	239205	2583.86	0.6492	7.49\%	8.1488
60.06	0.02	0.001017	7.6480	251.40	2204.58	2455.98	251.42	235752	2608.94	0.8320	7.0752	7.9072
69.10	0.03	0.001022	5.2284	289.24	2178.46	2467.70	289.27	2335.28	2624.55	0.941	6.8234	7.7675
75.86	0.04	0.001026	3.9930	317.58	2158.75	2476.33	317.62	2318.43	2636.05	1.0261	6.6429	7.6690
81.32	0.05	0.001030	3.2400	340.49	2142.72	2483.21	340.54	2304.68	2645.22	1.0912	6.5018	75930
85.93	0.06	0.001033	2.7317	359.85	2129.10	2488.95	359.91	2292.95	2652.86	1.1455	6.3856	7.5311
89.93	0.07	0.001036	23648	376.68	2117.20	2493.88	376.75	2282.67	2659.42	1.1921	6.2869	7.4790
93.49	0.08	0.001039	2.0871	391.63	2106.58	2498.21	391.71	2273,47	2665.18	1.2330	6.2009	7.4339
9.69	0.09	0.001041	1.8694	405.10	209697	2502.07	405.20	2265.11	2670.31	1.2696	6.1247	73943
99.61	0.1	0.001043	1.6939	417.40	2088.15	2505.55	417.50	2257.45	2674.95	1.3028	6.0561	73589
120.21	02	0.001061	0.8857	504.49	2024.60	2529.09	504.70	2201.53	2706.23	1.5302	5.5967	7.1269
133.52	03	0.001073	0.6058	561.11	1982.04	2543.15	561.43	2163.45	2724.88	1.6717	5.3199	6.9916
143.61	0.4	0.001084	0.4624	604.22	1948.88	2553.10	604.66	213339	2738.05	1.7765	5.1190	6.8955
151.83	0.5	0.001093	0.3748	639.54	1921.17	2560.71	640.09	2108.02	2748.11	1.8604	4.9603	6.8207
158.83	0.6	0.001101	0.3156	669.72	1897.07	2566.79	670.38	2085.76	2756.14	1.9308	4.8285	6.7593
164.95	0.7	0.001108	0.2728	696.23	1875.58	2571.81	697.00	2065.75	2762.75	1.9918	4.7153	6.7071
170.41	0.8	0.001115	0.2403	719.97	1856.06	2576.03	720.86	2047.44	2768.30	2.0457	4.6159	6.6616
175.35	0.9	0.001121	0.2149	741.55	1838.09	2579.64	742.56	2030.47	2773.03	2.0941	4.5272	6.6213
179.88	1	0.001127	0.1944	761.39	1821.36	2582.75	762.52	201459	2777.11	2.1381	4.4469	6.5850
187.96	1.2	0.001139	0.1633	796.96	1790.87	2587.83	798.33	1985.41	2783.74	22159	4.3058	65217
195.04	1.4	0.001149	0.1408	828.36	1763.40	2591.76	829.97	1958.88	2788.85	22835	4.1840	6.4675
201.37	1.6	0.001159	0.1237	856.60	173823	2594.83	858.46	1934.36	2792.82	23435	4.0764	6.4199
207.11	1.8	0.001168	0.1104	882.37	1714.87	2597.24	884.47	1911.44	2795.91	23975	3.9800	63775
212.38	2	0.001177	0.09\%	906.15	1692.97	2599.12	908.50	1889.79	2798.29	2.4468	3.8922	63390
223.95	2.5	0.001197	0.0799	958.91	1643.15	2602.06	961.91	1840.02	2801.93	25543	3.7015	6.2558
233.85	3	0.001217	0.0667	1004.69	1598.47	2603.16	1008.34	1794.81	2803.15	2.6456	3.5400	6.1856
242.56	3.5	0.001235	0.0571	1045.47	1557.47	2602.94	1049.80	175284	2802.64	27254	3.3989	6.1243
250.35	4	0.001253	0.0498	1082.48	1519.24	2601.72	1087.49	1713.33	2800.82	27968	3.2728	6.06\%
257.44	4.5	0.001270	0.0411	1116.53	1483.15	2599.68	1122.25	1675.70	279795	28615	3.1582	6.0197
263.94	5	0.001286	0.0394	1148.21	1448.77	25\%6.98	1154.64	1639.57	2794.21	29210	3.0527	59737
275.59	6	0.001319	0.0324	1206.01	1383.89	2589.90	121392	1570.67	2784.59	3.0278	28623	5.8901
285.83	7	0.001352	0.0274	1258.20	1322.78	2580.98	1267.66	1504.97	2772.63	3.1224	26924	5.8148
295.01	8	0.001385	0.0235	1306.23	1264.25	2570.48	1317.31	1441.37	2758.68	32081	25369	5.7450
303.35	9	0.001418	0.0205	1351.1]	1207.42	2558.53	1363.87	1379.07	2742.94	32870	23921	5.6791
311.00	10	0.001453	0.0180	1393.54	1151.65	2545.19	1408.06	1317.43	2725.49	33607	22553	5.6160
327.81	12.5	0.001546	0.0135	1492.26	1013.35	2505.61	1511.58	1162.73	2674.31	3.5290	1.9348	5.4638
342.16	15	0.001657	0.0103	1585.35	870.27	2455.62	1610.20	1000.50	2610.70	3.6846	1.6260	53106
354.67	17.5	0.001803	0.0079	1679.22	711.32	2390.54	1710.77	818.53	2529.30	3.8394	1.3037	5.1431
365.75	20	0.002040	0.0059	1786.41	508.63	2295.04	1827.21	585.14	241235	4.0156	0.9159	4.9315
373.95	22.06400	0.003106	0.0031	2015.73	0.00	2015.73	2084.26	0.00	208426	4.4070	0.0000	4.4070

III. Superheated Steam

$P=0.01$	MPa	(45.8)			$P=00$	05 MPa	(813)			$P=0$	MPa	(99.6)		
$\left.7{ }^{\prime} \mathrm{C}\right)$)($\left.\mathrm{m}^{3} / \mathrm{kg}\right)$	U(2)/8)	h(Uls)	S(L/g-K)	$7 \mathrm{C})$	$1\left(n^{3} / 48\right)$	U2Jk)	HWlkg)	(1)\%-K)	T'C)	$1\left(\nabla^{\prime} / \mathrm{kg}\right)$	(20kg)	M(llyg)	S(U)/g-K)
458	14.6701	20172	26519	8.148	81.3	1200	26812	26652	1.9080	\%6\%	16939	2056	26750	13568
50	149139	2413	29024	8.175										
100	17,1984	2155	2685	8.458	100	3189	2115	3684	16053	100	1489	2062	26758	13610
150	19.5182	2097.9	27810	88.592	150	3897	245.7	$27 \mathrm{Mo2}$	1,9113	150	1.8967	2929	27766	76188
300	21.808	3561.3	23796	8 Cm 97	30	4368	3060.0	28778	8.159	370	2.1721	35512	23753	751\%
250	24.1361	278.1	3714	8.015	250	4.806	2735.1	29761	83868	230	2 Ack	27319	20745	10546
300	26.46\%	23123	3046	4387	300	53840	2811.6	30588	853\%	300	2.638	28106	30745	83172
350	28.746	25060	3175	4.2513	340	5.768	$2 \mathrm{cos.4}$	31768	8.70\%	380	28710	$2 \mathrm{Ess.7}$	3178.8	8.366
430	31.6631	2065	12799	9604	25	63014	28859	3193	8.5699	400	1.1087	29583	1278	8555
450	33.3714	30503	31440	2.75.4	450	6.6717	30089	33835	4.6151	450	3134	3005.4	3808	86945
500	35676	31929	3469	4.898	50	7.1388	31826	38093	9.1566	300	3.568	3182	358.7	88361
550	3798\%	3817.2	3597.1	10.034	580	7.9057	3817.0	39068	9.213	580	3.708	38156	3956	8970
600	40.2985	3013	3×63	12.163	60)	8.0576	303.1	3×60	9.3301	600	4.819	31028	37086	90088
650	426055	3312	3172	10.2166	650	85195	33010	38169	9.4.36	650	4.250	3000.7	31166	92234
700	4.9113	360.8	3098	Leasbs	700	8.812	34066	30097	9.665	760	4.200	360.4	309.4	9384
780	47.2191	3572.2	4)4.4	105308	790	9.4130	35720	4042	9.773	780	4.7309	35718	4W139	9.6572
toto	405309)0653	41606	te6311	30)	59047	36652	41604	4088	tom	45519	36650	41602	95651
850	51847	37603	47786	10.7395	850	103663	3700.1	42785	4.965	850	5.188	37000	2272	4.6759
900	3.1484	38569	4583	10449	900	108860	38468	438.2	10.1000	900	5.1137	38466	4380	2\%e0
980	56.4501	3755	4519.7	10.946	950	11.296	3955.1	4519.5	102014	950	58.846	3959.0	45195	98513
1000	387878	43552	4428	11.0428	100	11.3513	4059.1	46429	103000	1000	5.874	40550	4426	98000
1050	61.265	41868	47675	11.1399	1060	12.2129	4158	4\%76.4	103960	1050	6.1061	41866	47673	10.5761
1160	61372	4 Nab	45907	11.2395	1100	12.6745	4399.9	4 W 23	10.4997	1100	6337	4898	49935	10.169
1150	656858	4) 4.7	50215	11.3239	1150	11.130	43846	5081.4	10.5811	1150	56800	4845	5021.3	10.2651
1200	679885	46709	5150.7	11.2132	1200	115971	4178	51507	10.6705	1200	6.7088	450.7	5150.6	103504
129	70.851	4578.4	581.4	115004	1250	14.0592	4578.4	58813	10896	180	7/06	45873	531.2	10438
$1300,$	1260s	$\begin{gathered} 4624 \\ 015 \end{gathered}$	5413.4	11.5859	1900	, 4.5088	4613 $(1355$	54113	10.888	$\begin{aligned} & 1300 \\ & P=0 \end{aligned}$	$\frac{73604}{}$	$\begin{aligned} & 46192 \\ & (1416) \end{aligned}$	5413	10520
T'C)	H($\left.\mathrm{m}^{3} / \mathrm{ke}\right)$	Ulalkg)	HWlkg	S(Lkg-K)	T'C)	11 $\left.\mathrm{m}^{3} / \mathrm{kg}\right)$	U13kg)	MUly	921keK)	T' ${ }^{\prime}$)	Il ${ }^{3} \mathrm{lkg}$	(120kg)	H1019	SLHe-K)
1203	-2357	2589.1	276.2	7.1500	1385	0.6058	25482	2724	6.5016	143.6	(ats)	2558.1	2738.1	68565
150	(6999	2577.1	2160.1	7380	150	0.6340	2710	28512	7.0791	150	eator	264.4	27928	6.9505
200	18005	26546	2870.7	7.5081	200	0.7164	25510	25659	73131	200	-5343	20872	23609	7.1723
250	1.1969	2751.4	29712	2.7500	250	0.5964	27289	2679	75150	230	-6952	27284	2045	7304
300	11365	206s	3072.1	78841	300	65753	2 xin 0	30696	7.7017	300	-6549	2506.1	3067.1	75677
350	1.4330	20893	3173.9	8.064	350	0.9536	2×859	31720	78750	350	- 27145	2084	31700	72399
400	1.5498	2067.1	32770	8.2236	450	1.0315	29660	32755	880347	400	0.7725	29649	32719	79002
450	1.6685	30tes	381.6	8.374	450	1.1092	30475	33003	8.18 \%	450	- 4311	30456	3390	8805
500	1.818	11114	38179	85158	350	11587	31315	34856	8.1271	50	-x30t	31208	3855	8.553
550	18973	32159	3958.4	8.6500	580	1.2641	32153	35945	8.4633	580	6.9475	3214.5	3593.6	8388
600	20130	33022	3704.8	8.702	600	13414	33016	37040	85014	600	1005\%	33010	30032	8.850
66\%	2.1287	33502	35159	88030	650	1.4186	3350.7	38153	䞼7159	650	1.66\%	3360.1	35146	8850
70	2340	31099	3028.	40935	N0	1.4058	1095	30582	8534	500	1.1819	3\% ${ }^{\text {a }}$	3076	8.7012
750	23999	3571.4	4543.4	9138	750	1.5729	3571.0	20429	8.5494	750	1.1794	3575	4042.4	8816
800	2.4755	M6447	41598	9285	80	1.6500	36643	4159.3	9.6604	800	12313	36619	41588	80273
650	25710	3799.5	42778	93559	850	17271	37593	4271.4	9.1659	850	12851	3750.0	4277.0	90.050
90	2706	30563	49956	9.55\%	950	13042	38560	4993	9.2754	900	13530	3855.7	4366	9.1384
\$50	28221	3084.7	4519.1	98612	980	1.812	3984.4	49188	9.3739	950	1.4108	3054.2	45185	9305
1060	29375	43548	4542.3	96599	100	19562	40545	26420	9.47\%	1000	126\%	40543	4641.7	9175
156	30570	41564	4757.0	97560	1060	20352	4158	45667	9.56st	1050	15354	41559	47565	9.855
1150	3.688	4259.6	25913	98097	1100	21122	4250.4	25031	9.6631	150	15841	42502	25928	95895
1150	32839	5×43	5021.1	99411	1150	21802	4364.1	S0809	9.7588	1150	1.8419	4889	5030.7	98309
1200	33994	45785	5150.4	thenst	1290	2 $\times 662$	41583	51502	9.8431	1200	1.0997	4072.1	51500	971t
1250	35148	457×1	531.1	10.1176	1250	2342	4577.9	53×19	9.9303	1230	1.7574	45778	5350.7	97075
1360	3.6302	48575	5413.1	10.20189	1360	20002	4656.9	54129	10.0156	1300	18152	486.7	54128	98888

$P=9.00 \mathrm{MPa}$		(303.4)			$P=10.00 \mathrm{MPa}$		(311.0)			$P=12.50 \mathrm{MPa}$		(327.8)		
$7\left({ }^{\circ} \mathrm{C}\right)$	$V\left(\mathrm{~m}^{3} / \mathrm{kg}\right)$	$U(\mathrm{~kJ} / \mathrm{kg})$	$H(\mathrm{k} / \mathrm{kg})$	$S(\mathrm{~kJ} / \mathrm{kg}-\mathrm{K})$	$7\left({ }^{\circ} \mathrm{C}\right)$	$V\left(\mathrm{~m}^{3} / \mathrm{kg}\right)$	$U(\mathrm{~kJ} / \mathrm{kg})$	$H(\mathrm{~kJ} / \mathrm{kg})$	$S(\mathrm{~kJ} / \mathrm{kg}-\mathrm{K})$	$T\left({ }^{\circ} \mathrm{C}\right)$	$1\left(\mathrm{~m}^{3} / \mathrm{kg}\right)$	$U(\mathrm{k} / \mathrm{kg})$	$H(\mathrm{k} / \mathrm{kg})$	$S(\mathrm{~kJ} / \mathrm{kg}-\mathrm{K})$
303.4	0.0205	2558.5	2742.9	5.6791	311.0	0.0180	2545.2	2725.5	5.6160	327.8	0.0135	2505.61	2674.31	5.4638
350	0.0258	2724.9	2957.3	6.0380	350	0.0224	2699.6	2924.0	5.9459	350	0.0161	2624.8	2826.6	5.7130
400	0.0300	2849.2	3118.8	6.2876	400	0.0264	2833.1	3097.4	6.2141	400	0.0200	2789.6	3040.0	6.0433
450	0.0335	2956.3	3258.0	6.4872	450	0.0298	2944.5	3242.3	6.4219	450	0.0230	2913.7	3201.4	6.2749
500	0.0368	3056.3	3387.4	6.6603	500	0.0328	3047.0	3375.1	6.5995	500	0.0256	3023.2	3343.6	6.4650
550	0.0399	3153.0	3512.0	6.8164	550	0.0357	3145.4	3502.0	6.7585	550	0.0280	3126.1	34765	6.6317
600	0.0429	3248.4	3634.1	6.9605	600	0.0384	3242.0	3625.8	6.9045	600	0.0303	3225.8	3604.6	6.7828
650	0.0458	3343.4	3755.2	7.0953	650	0.0410	33379	3748.1	7.0408	650	0.0325	3324.1	3730.2	6.9227
700	0.0486	3438.8	3876.1	7.2229	700	0.0436	3434.0	3870.0	7.1693	700	0.0346	3422.0	3854.6	7.0539
750	0.0514	3534.9	3997.3	7.3443	750	0.0461	3530.7	3992.0	7.2916	750	0.0367	3520.1	3978.6	7.1782
800	0.0541	3632.0	4119.1	7.4606	800	0.0486	3628.2	4114.5	7.4085	800	0.0387	3618.7	41028	7.2967
850	0.0569	3730.2	4241.9	7.5724	850	0.0511	3726.8	4237.8	7.5207	850	0.0407	3718.3	4227.5	7.4102
900	0.05\%	3829.6	4365.7	7.6802	900	0.0535	3826.5	4362.0	7.6290	900	0.0427	3818.9	4352.9	7.5194
950	0.0622	3930.3	4490.6	7.7844	950	0.0560	3927.5	4487.3	7.7335	950	0.0447	3920.6	4479.2	7.6249
1000	0.0649	4032.4	4616.7	7.8855	1000	0.0584	4029.9	4613.8	7.8349	1000	0.0466	4023.5	4606.5	7.7269
1050	0.0676	4135.9	4744.0	7.9836	1050	0.0608	4133.5	4741.4	7.9332	1050	0.0486	4127.7	47349	7.8258
1100	0.0702	4240.6	4872.7	8.0790	1100	0.0632	4238.5	4870.3	8.0288	1100	0.0505	4233.1	4864.5	7.9219
1150	0.0729	4346.8	5002.5	8.1719	1150	0.0656	4344.8	5000.4	8.1219	1150	0.0524	4339.8	4995.1	8.0154
1200	0.0755	4454.2	5133.6	8.2625	1200	0.0679	4452.3	5131.7	8.2126	1200	0.0543	4447.7	5127.0	8.1065
1250	0.0781	4562.9	52660	8.3508	1250	0.0703	4561.2	5264.2	8.3010	1250	0.0562	4556.9	5260.0	8.1952
$\begin{aligned} & 1300 \\ & P=1 . \end{aligned}$	0.08007 00 MPa	$\begin{gathered} 46729 \\ (342.2) \end{gathered}$	5399.5	8.4370	$\begin{aligned} & 1300 \\ & P=1 \end{aligned}$	$\stackrel{0.0727}{7.50 \mathrm{MPa}}$	4671.3 (354.7)	5397.9	8.3874	$\begin{aligned} & 1300 \\ & P=2 \end{aligned}$	$\begin{aligned} & 00581 \\ & 00 \mathrm{MPa} \end{aligned}$	4667.3 (365.8)	5394.1	8.2819
$\left.T{ }^{\circ} \mathrm{C}\right)$	$V\left(\mathrm{~m}^{3} / \mathrm{kg}\right)$	$U(\mathrm{~kJ} / \mathrm{kg})$	$H(\mathrm{k} / \mathrm{kg})$	$5(\mathrm{~kJ} / \mathrm{kg}-\mathrm{K})$	$\left.7{ }^{\circ} \mathrm{C}\right)$	$V\left(\mathrm{~m}^{3} / \mathrm{kg}\right)$	$U(\mathrm{~kJ} / \mathrm{kg})$	$H(\mathrm{k} / \mathrm{kg})$	$S(\mathrm{~kJ} / \mathrm{kg}-\mathrm{K})$	$\left.T{ }^{\circ} \mathrm{C}\right)$	$V\left(\mathrm{~m}^{3} / \mathrm{kg}\right)$	$U(\mathrm{k} / \mathrm{kg})$	$H(\mathrm{~kJ} / \mathrm{kg})$	S(kJ/kg-K)
342.2	0.0103	2455.6	2610.7	5.3106	354.7	0.0079	2390.5	2529.3	5.1431	365.8	0.0059	2295.0	2412.4	4.9315
350	0.0115	2520.9	2693.1	5.4437										
400	0.0157	2740.6	2975.7	5.8819	400	0.0125	2684.3	2902.4	5.7211	400	0.0100	26179	2816.9	55525
450	0.0185	2880.7	3157.9	6.1434	450	0.0152	2845.4	3111.4	6.0212	450	0.0127	28072	3061.7	5.9043
500	0.0208	2998.4	3310.8	6.3480	500	0.0174	2972.4	3276.7	6.2424	500	0.0148	2945.3	3241.2	6.1446
550	0.0229	3106.2	3450.4	6.5230	550	0.0193	3085.8	3423.6	6.4266	550	0.0166	3064.7	33\%.1	63389
600	0.0249	3209.3	3583.1	6.67\%	600	0.0211	3192.5	3561.3	6.5890	600	0.0182	3175.3	3539.0	6.5075
650	0.0268	3310.1	3712.1	6.8233	650	0.0227	3295.8	3693.8	6.7366	650	0.0197	3281.4	3675.3	6.6593
700	0.0286	3409.8	3839.1	6.9572	700	0.0243	3397.5	3823.5	6.8734	700	0.0211	3385.1	3807.8	6.7990
750	0.0304	3509.4	3965.2	7.0836	750	0.0259	3498.6	3951.7	7.0019	750	0.0225	3487.7	3938.1	69297
800	0.0321	3609.2	4091.1	7.2037	800	0.0274	3599.7	4079.3	7.1236	800	0.0239	3590.1	4067.5	7.0531
850	0.0338	3709.8	4217.1	7.3185	850	0.0289	3701.2	42068	7.2398	850	0.0252	3692.6	4196.4	7.1705
900	0.0355	3811.2	4343.7	7.4288	900	0.0303	3803.4	4334.5	7.3511	900	0.0265	3795.7	4325.4	72829
950	0.0372	3913.6	4471.0	7.5350	950	0.0318	3906.6	4462.9	7.4582	950	0.0278	3899.5	4454.7	73909
1000	0.0388	4017.1	4599.2	7.6378	1000	0.0332	4010.7	4592.0	7.5616	1000	0.0290	4004.3	4584.7	7.4950
1050	0.0404	4121.8	4728.4	7.7373	1050	0.0346	4115.9	4721.9	7.6617	1050	0.0303	4110.0	4715.4	7.5957
1100	0.0421	4227.7	4858.6	7.8339	1100	0.0360	4222.3	4852.8	7.7588	1100	0.0315	4216.9	4846.9	7.6933
1150	0.0437	4334.8	4989.9	7.9278	1150	0.0374	4329.8	4984.6	78531	1150	0.0327	4324.8	4979.4	7.7880
1200	0.0453	4443.1	5122.3	8.0192	1200	0.0388	4438.4	5117.5	7.949	1200	0.0340	44338	51128	78802
1250	0.0469	4552.6	5255.7	8.1083	1250	0.0402	45483	5251.5	8.0343	1250	0.0352	4544.0	5247.2	7.9699
1309	00485	4663.2	5390.3	8.1952	1300	0.0416	4659.2	53864	8.1215	1300	000364	46552	5382.6	80574

Properties of Selected Compounds

Heat capacities are values for ideal gas at 298 K and should be used for order of magnitude calculations only. See appendices for temperature-dependent formulas and constants.

ID	Compound	$\begin{gathered} T_{c} \\ (\mathrm{~K}) \end{gathered}$	$\begin{gathered} P_{c} \\ (\mathrm{MPa}) \end{gathered}$	ω	$\underset{\mathrm{g} / \mathrm{cm}^{3}}{\rho}$	MW	$C_{P}{ }^{i g / R}$	$\underset{\left(\mathrm{J} / \mathrm{cm}^{3}\right)^{5}}{\delta}$	$\begin{gathered} \alpha \\ \left(\mathrm{J} / \mathrm{cm}^{3}\right)^{5} \end{gathered}$	$\begin{gathered} \beta \\ \left(\mathrm{J} / \mathrm{cm}^{3}\right)^{n} \end{gathered}$
902	HYDROGEN	33.3	1.297	-0.215	0.20	2	3.507	2.0	0	0
905	Nitrogen	126.1	3.394	0.040	0.88	28	3.500	5.3	0	0
908	CARBON MONOXIDE	132.9	3.499	0.066	0.88	28	3.505	6.3	0	0
909	CARBON DIOXIDE	304.2	7.382	0.228	1.18	44	4.456	14.6	1.87	0
Nasty gases										
1922	HYDROGEN SULFIDE	373.5	8.937	0.081	0.95	34	4.115	18.0	3.19	3.19
1938	CARBON DISULFIDE	552	7.800	0.115	1.26	76	4.109	20.4	0.59	0.33
1904	HYDROGEN CHLORIDE	324.6	8.200	0.120	1.19	36.5	3.551	22.0	$22.0{ }^{\circ}$	0
1771	HYDROGEN CYANIDE	456.8	5.320	0.407	0.68	27	4.330	24.8	3.00	3.00
Miscellaneous compounds										
1051	ACETONE	508.2	4.701	0.306	0.79	58	8.96	19.6	0.00	11.14
1772	ACETONITRILE	545.5	4.833	0.353	0.78	44	6.28	24.1	3.49	8.98
1252	ACETIC ACID	592.7	5.786	0.462	1.04	60	15.01	19.0	24.03	7.50
1911	AMMONIA	406.6	11.270	0.252	0.68	17	4.29	29.2	2.11	8.44
1921	WATER	647.3	22.120	0.344	1.00	18	4.04	47.9	50.13	15.06

ANSWERS Quiz 4
 Chemical Engineering Thermodynamics
 February 11, 2016

(P4.2) Initial (each x represents 5 molecule)

xxxx	

Final

\mathbf{x}	\mathbf{x}
\mathbf{x}	\mathbf{x}

Create a space with a three empty boxes for the initial state. The number of molecules is too small to use Stirling's approximation.
$\mathrm{p} 1=20!/(20!0!0!0!)=1$
p2 $=20!/(5!5!5!5!)=20^{*} 19^{*} 18^{*} 17^{*} 16^{*} 15^{*} 14^{*} 13 * 12 * 11^{*} 10^{*} 9 * 8 * 7 * 6 /\left(5 * 4^{*} 3 * 2\right)^{\wedge} 3=$
11732745024
$\Delta \mathrm{S} / \mathrm{k}=\ln (\mathrm{p} 2 / \mathrm{p} 1)=\ln (11732745024)=23.18$
This can also be calculated from the volume ratio,
$\Delta \mathrm{S} / \mathrm{k}=20 \ln \left(\mathrm{~V}_{2} / \mathrm{V}_{1}\right)=20(1.39)=27.7$
The increase of 4.53 k in $\Delta \mathrm{S}$ is due to release of the constraint of confinement of the groups of five atoms in the four boxes.
(4.09) Airplanes are launched from aircraft carriers by means of a steam catapult.

Solution : It cannot generate more than the adiabatic reversible result. But in principle it could generate at most the adiabatic reversible result.

Energy Balance : $\mathrm{d}(\mathrm{mU})=\mathrm{Q}+\mathrm{W}=\mathrm{W}$
Entropy balance : $\Delta \mathrm{S}=0$
State 1: $\mathrm{U}_{1}=2880.7$
State 2 : Sat liq $U-604.22 \mathrm{~S}=1.7765$
$\mathrm{S}_{1}=6.1434$
Sat Vap $U=2553.1 \mathrm{~S}=6.8955$
$V_{1}=18.5 \mathrm{~cm}^{3} / \mathrm{g}$
$\mathrm{V}^{\text {sal }}=1.08 \mathrm{~cm}^{3} / \mathrm{g}, \mathrm{V}^{\text {aiV }}=462 \mathrm{~cm}^{3} / \mathrm{g}$

Therefore, work done by gas
$\mathrm{q}=(6.1434-1.7765) /(6.8955-1.7765)=0.853$
$\mathrm{U}_{2}=0.853 * 2553.1+0.147 * 604.2=2266.6$
$W_{\text {pas }}=2266.6-2880.7=-614.1 \mathrm{~kJ} / \mathrm{kg}$
$\underline{W}_{\text {gas }}=270 *(-614.1)=-165,800 \mathrm{~kJ}$
Some of the work is done on the atmosphere, need $\mathrm{P}_{\text {atm }} \Delta \underline{\mathrm{V}}$
$\mathrm{V}^{\mathrm{r}}=1.085+0.853(461)=394 \mathrm{~cm}^{3} / \mathrm{g}$
$\underline{W}_{\mathrm{EC}, \mathrm{atm}}=-\mathrm{P}_{\mathrm{atm}}\left(\underline{\mathrm{V}}^{\mathrm{r}}-\underline{\mathrm{V}}^{\mathrm{i}}\right)=-0.1 \mathrm{MPa}^{*}(270 \mathrm{E} 3 \mathrm{~g})(394-185)=10,139 \mathrm{~kJ}$
Net work (ignoring acceleration of piston -- mass not given) $=-165,800+10,139$
$=-156,000 \mathrm{~J}$
For the Airplane, calculate the KE necessary at $350 \mathrm{~km} / \mathrm{h}$
$\mathrm{W}_{\mathrm{S}}=\int \mathrm{d}\left(\mathrm{m}\left(\mathrm{v}^{2} / 2\right)\right)$
$=\mathrm{m}\left(\mathrm{v}^{\mathrm{f}}\right)^{2} / 2=30000 \mathrm{~kg}^{*}(350000 \mathrm{~m}-\mathrm{hr} / 3600 \mathrm{hr}-\mathrm{s})^{2} / 2$
$=141,782 \mathrm{~kJ}$
$156,000>142,000$ Therefore the catapult can generate enough work to launch the plane.
Or, one could calculate the final plane velocity for $156,000 \mathrm{~kJ}$.
$\operatorname{Sqrt}\left((1.56 \mathrm{E} 8 \mathrm{~J})^{*} 2 / 30 \mathrm{E} 3 \mathrm{~kg}\right)=102 \mathrm{~m} / \mathrm{s}=367 \mathrm{~km} / \mathrm{hr}$, plenty of speed.

